Hayabusa
  • 18 Apr 2024
  • 4 Minutes to read
  • Contributors
  • Dark
    Light

Hayabusa

  • Dark
    Light

Article summary

Hayabusa Extension Pricing

While it is free to enable the Hayabusa extension, pricing is applied to downloaded and processed artifacts -- $0.02/GB for the original artifact, and $0.5/GB for the generation of the Hayabusa artifact.

The Hayabusa extension allows you to run Hayabusa against a specified event log (.evtx) or a collection of event logs (.zip).

Hayabusa is a Windows event log fast forensics timeline generator and threat hunting tool created by the Yamato Security group in Japan.

LimaCharlie will automatically kick off the analysis based off of the artifact ID provided in a D&R rule action, or you can run it manually via the extension.

Configuration

When enabled, you may configure the response of a D&R rule to run a Hayabusa analysis against an artifact event. Consider the following example D&R rule:

Detect:

event: ingest
op: exists
path: /
target: artifact_event
artifact type: wel

Respond:

- action: extension request
  extension action: generate
  extension name: ext-hayabusa
  extension request:
       artifact_id: '{{ .routing.log_id }}'
       send_to_timeline: true
       profile: '{{ "timesketch-verbose" }}'
       min_rule_level: '{{ "informational" }}'

Note that the only required field here is the artifact_id. The other values supplied in the example are the defaults.

Results

hayabusa update-rules

hayabusa csv-timeline -f /path/to/your/artifact --RFC-3339 -p timesketch-$profile --min-level $min_rule_level --no-wizard --quiet -o $artifact_id.csv -U

Upon running Hayabusa, a CSV file is generated. The CSV file will be uploaded as a LimaCharlie artifact.

The resulting CSV is compatible with Timesketch, and can be imported as a timeline.

Outputting your data to Google BigQuery is another option, and is outlined here

Several events will be pushed to the ext-hayabusa sensor timeline:

  • hayabusa_results: contains the results summary from the Hayabusa output
  • hayabusa_artifact: contains the artifact_id of the CSV file that was uploaded to LimaCharlie
  • hayabusa_event: many of these will be sent to the timeline if you check the checkbox or parameter for Send to timeline, and it contains the raw contents of the Hayabusa CSV output in JSON format

Arguments

  • artifact_id: ID of the LimaCharlie artifact to process
  • profile: either minimal, standard, verbose, all-field-info, all-field-info-verbose, super-verbose, timesketch-minimal, or timesketch-verbose
  • min_rule_level: informational, low, medium, high, or critical, more details
    • Default: informational
  • send_to_timeline: whether or not to ingest the Hayabusa results into the sensor timeline as events, boolean, default true

Usage

If you use the LimaCharlie Velociraptor extension, a good use case of this extension would be to trigger Hayabusa analysis upon ingestion of a Velociraptor KAPE files artifact.

Kick off a Windows.KapeFiles.Targets artifact collection in the LimaCharlie Velociraptor extension

Argument options:

  • EventLogs=Y
    Screenshot 2024-03-07 at 1.07.56 PM.png
  • KapeTriage=Y - this is an option, however the extension will first take all .evtx files out of the triage collection and send them through Hayabusa, and ignore the rest, so there is more overhead involved, versus just using EventLogs=Y.

Configure a D&R rule to look for these events upon ingestion, and then trigger the Hayabusa extension:

Detect:

op: and
target: artifact_event
rules:
    - op: is
      path: routing/log_type
      value: velociraptor
    - op: is
      not: true
      path: routing/event_type
      value: export_complete

Respond:

- action: extension request
  extension action: generate
  extension name: ext-hayabusa
  extension request:
      artifact_id: '{{ .routing.log_id }}'
      send_to_timeline: true    # `false` if you only want the CSV artifact

Generate LC Detections from Hayabusa Output

Note

This capability depends on setting the parameter to send Hayabusa output to the sensor timeline with send_to_timeline: true

Assuming you want Hayabusa detections of a certain Level or severity sent directly to your LimaCharlie detections stream, you can use the following D&R rule to accomplish this:

Detect:

event: hayabusa_event
op: and
rules:
  - op: is
    path: routing/hostname
    value: ext-hayabusa
  - op: matches
    path: event/results/Level
    re: (med|high|crit)

Respond:

- action: report
  name: >-
    Hayabusa - {{ .event.results.Level }} - {{ .event.results.message }}

The resulting detection would look something like this:

{
  "action": "report",
  "data": {
    "cat": "Hayabusa - med - Failed Logon From Public IP",
    "detect": {
      "event": {
        "artifact_id": "eb39c3b4-6312-41c8-8b6e-e0b46b2f870e",
        "artifact_type": "evtx",
        "event": "hayabusa_event",
        "job_id": "2e904fda-6d3f-4ce1-bf82-ede97f3c0d17",
        "results": {
          "Channel": "Sec",
          "Computer": "windows-server-2022-01304add-3354-4cca-b574-b0a54d7bb6f4-0",
          "Details": "Type: 3 - NETWORK ¦ TgtUser: 4cca ¦ SrcComp: WIN-S2Q2306JU66 ¦ SrcIP: 185.161.248.147 ¦ AuthPkg: NTLM ¦ Proc: -",
          "EventID": "4625",
          "EvtxFile": "/tmp/triage_1078055872.evtx",
          "ExtraFieldInfo": "FailureReason: BAD USER OR PW ¦ IpPort: 0 ¦ KeyLength: 0 ¦ LogonProcessName: NtLmSsp ¦ ProcessId: 0 ¦ Status: BAD USER OR PW ¦ SubStatus: UNKNOWN USER ¦ SubjectLogonId: 0x0 ¦ SubjectUserSid: S-1-0-0 ¦ TargetDomainName: windows-server-2022-01304add-3354-4cca-b574-b0a54d7bb6f4-0 ¦ TargetUserSid: S-1-0-0",
          "Level": "med",
          "MitreTactics": "InitAccess ¦ Persis",
          "MitreTags": "T1078 ¦ T1190 ¦ T1133",
          "OtherTags": "",
          "RecordID": "681128",
          "RuleFile": "win_security_susp_failed_logon_source.yml",
          "datetime": "2024-03-20 21:50:55.930385+00:00",
          "message": "Failed Logon From Public IP",
          "timestamp_desc": "hayabusa"
        }
      },
      "routing": {
        "arch": 9,
        "did": "",
        "event_id": "0a6989a1-af71-4583-a8bc-e766bd2a81d8",
        "event_time": 1711071722721,
        "event_type": "hayabusa_event",
        "ext_ip": "internal",
        "hostname": "ext-hayabusa",
        "iid": "bfac2d1f-5d8c-4115-9df2-633a4f1d062b",
        "int_ip": "",
        "moduleid": 6,
        "oid": "01304add-3354-4cca-b574-b0a54d7bb6f4",
        "plat": 2415919104,
        "sid": "3109b3c7-c5ca-4029-b493-4d4e6766c4d3",
        "tags": [
          "ext:ext-hayabusa",
          "lc:system"
        ],
        "this": "76088a58bb99484c82cf9e9065fce1ea"
      },
      "ts": "2024-03-22 01:42:02"
    },
    "detect_id": "90609b8b-c2b8-4537-b17e-5d1665fd8717",
    "gen_time": 1711114007077,
    "link": "https://app.limacharlie.io/orgs/01304add-3354-4cca-b574-b0a54d7bb6f4/sensors/3109b3c7-c5ca-4029-b493-4d4e6766c4d3/timeline?time=1711071722&selected=76088a58bb99484c82cf9e9065fce1ea",
    "mtd": null,
    "routing": {
      "arch": 9,
      "did": "",
      "event_id": "0a6989a1-af71-4583-a8bc-e766bd2a81d8",
      "event_time": 1711071722721,
      "event_type": "hayabusa_event",
      "ext_ip": "internal",
      "hostname": "ext-hayabusa",
      "iid": "bfac2d1f-5d8c-4115-9df2-633a4f1d062b",
      "int_ip": "",
      "moduleid": 6,
      "oid": "01304add-3354-4cca-b574-b0a54d7bb6f4",
      "plat": 2415919104,
      "sid": "3109b3c7-c5ca-4029-b493-4d4e6766c4d3",
      "tags": [
        "ext:ext-hayabusa",
        "lc:system"
      ],
      "this": "76088a58bb99484c82cf9e9065fce1ea"
    },
    "source": "01304add-3354-4cca-b574-b0a54d7bb6f4.bfac2d1f-5d8c-4115-9df2-633a4f1d062b.3109b3c7-c5ca-4029-b493-4d4e6766c4d3.90000000.9",
    "source_rule": "replay-rule"
  }
}

Was this article helpful?

What's Next