MENU
    Google Cloud BigQuery
    • 10 Dec 2024
    • 1 Minute to read
    • Dark

    Google Cloud BigQuery

    • Dark

    Article summary

    Output events and detections to a Google Cloud BigQuery Table.

    For a practical use case of this output, see this tutorial on pushing Velociraptor data to BigQuery.

    • schema: describes the column names, data types, and other information; should match the text-formatted schema from bigquery

    • table: the table name where to send data.

    • dataset: the dataset name where to send data.

    • project: the project name where to send the data.

    • secret_key: the secret json key identifying a service account.

    • sec_per_file: the number of seconds after which a batch of data is loaded.

    • custom_transform: should align with the schema fields/formats

    Example:

    schema: event_type:STRING, oid:STRING, sid:STRING
    table: alerts
    dataset: limacharlie_data
    project: lc-example-analytics
    secret_key: {
      "type": "service_account",
      "project_id": "my-lc-data",
      "private_key_id": "11b6f4173dedabcdefb779e4afae6d88ddce3cc1",
      "private_key": "-----BEGIN PRIVATE KEY-----\n.....\n-----END PRIVATE KEY-----\n",
      "client_email": "my-service-writer@my-lc-data.iam.gserviceaccount.com",
      "client_id": "102526666608388828174",
      "auth_uri": "https://accounts.google.com/o/oauth2/auth",
      "token_uri": "https://oauth2.googleapis.com/token",
      "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
      "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/my-service-writer%40my-lc-data.iam.gserviceaccount.com"
    }
    custom_transform: |-
      {
        "oid":"routing.oid",
        "sid":"routing.sid",
        "event_type":"routing.event_type"
      }
    YAML


    Was this article helpful?